Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm

نویسندگان

  • Ahmed M. Gad
  • Abeer S. Ahmed
چکیده

Longitudinal data are not uncommon in many disciplines where repeated measurements on a response variable are collected for all subjects. Some intended measurements may not be available for some subjects resulting in a missing data pattern. Dropout pattern occurs when some subjects leave the study prematurely. The missing data pattern is defined as intermittent if a missing value followed by an observed value. When the probability of missingness depends on the missing value, and may be on the observed values, the missing data mechanism is termed as nonrandom. Ignoring the missing values in this case leads to biased inferences. The stochastic EM (SEM) algorithm is proposed and developed to find parameters estimates in the presence of intermittent missing values. Also, in this setting, the Monte Carlo method is developed to find the standard errors of parameters estimates. Finally, the proposed techniques are applied to a real data from the International Breast Cancer Study Group. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند

Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...

متن کامل

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

Linear Mixed Models for Longitudinal Data with Nonrandom Dropouts

Longitudinal studies represent one of the principal research strategies employed in medical and social research. These studies are the most appropriate for studying individual change over time. The prematurely withdrawal of some subjects from the study (dropout) is termed nonrandom when the probability of missingness depends on the missing value. Nonrandom dropout is common phenomenon associate...

متن کامل

Parameter Estimation in Stochastic Volatility Models with Missing Data Using Particle Methods and the Em Algorithm

Stochastic volatility (SV) models have become increasingly popular for explaining the behavior of financial variables such as stock prices and exchange rates, and their popularity has resulted in several different proposed approaches to estimating the parameters of the model. An important feature of financial data, which is commonly ignored, is the existence of missing values. In this article, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006